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MONTEREY. Ci-

ABSTRACT

A study of three Markovian queues wherein customers

require two separate types of service upon arrival. The

two service channels operate independently but receive de-

mands through a common arrival process. Transient and steady

state results are established in the case that the service

channels have an infinite number of servers. The remaining

two systems, finite server and finite capacity, are not

completely modeled. However, special results concerning

their stochastic nature are documented.
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I. INTRODUCTION

The theory of queues is rich with information on the

classical type of queueing problems. In most cases, the

solution to these problems is straightforward and agrees

with one's intuitions concerning actual physical situations.

Quite often, however, solutions rely upon the fact that ar-

rival and service distributions are independent. In n-server

queues, one usually stipulates that arrivals enter each queue

independently

.

The purpose of this thesis is to investigate three types

of service systems in which arriving customers generate jobs

to two service systems simultaneously. Thus, while the serv-

ice systems work independently of each other, they both receive

customers via the same arrival mechanism.

The first system to be studied is the two channel queue,

where each service channel has an infinite number of servers.

The second system is a modification of the first whereby each

service channel has only one server and queues are allowed to

build up. Finally, the third system further modifies the

situation by assuming that the entire system has a maximum

capacity of K customers.

The following chapters will show that the infinite server

system is easily solved. However, as soon as one restricts

the number of servers to one per channel, several difficul-

ties arise. At this time, only partial information has been



established concerning the probabalistic nature of these

two later systems. Hopefully, further investigation can

be performed utilizing the current findings, limited as they

are.
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II. THE WO CHANNEL INFINITE SERVER QUEUE

In this first case, it is assumed that customer arrivals

occur in accordance with a Poisson Process of intensity \ .

Each arrival requires two separate services which are performed

simultaneously. The two service channels operate independently

and each have an infinite or unlimited number of servers. The

servers in channel one work at an exponential rate with mean

1

M, t while those in channel two work at an exponential rate

with mean
JUL'

Let N be the number of customers in the system at equilib-

rium. Let N, and N 'be the number of jobs being performed in

each channel at equilibrium.

The diagram below shows the system for an arbitrary

instant in time.

\



Note that N = max [N-^N^ and that N and N are depend-

ent random variables. Furthermore, "because the service chan-

nels are independent the marginal distributions for N, and N

are both Poisson.

P(N n
= i) = e

(£)'X ( x

1 *' i!

P(N = j) =
A;

e

XV
^2

2 J/
j!

In order to describe the characteristics of this queueing

system, it will be necessary to apply the theory of the filtered

Poisson Process. Parzen defines a filtered Poisson Process as

a stochastic process which can be represented as

A(t)

X(t) = 2— w(t,T n ,Yn )

n=0 n n

where A(t) is a Poisson Process with intensity \ .

Y is a sequence of independent random variables

identically distributed as Y and independent of A(t).

w(t,\ , Y ) is a response function and "C is the time

of the n arrival. Here w indicates whether an

arrival is still present in the system at time t.

In the context of queueing theory, Y
n

will be the sequence

of service time random variables. The response function will

be defined as

10



1 iff Y t-t
Vf(± T Y ) =a

n n
KZ

'
L n' V iff Y t-t

n n

In effect, w "counts" the number of customers present

at time t. Thus the number of customers present can be

viewed as

A(t)

N(t) = Z_ w(t,X n , Yn )

n=0
n n

A. STEADY STATE DISTRIBUTION FOR THE NUMBER OF CUSTOMERS
IN THE SYSTEM

Since both services commence simulaneously, the service

time for each customer is Y = max}S-.,S
2

f where S, -^-Expo-

nential (AJi-,) and Sp -~~ Exponential ( M.-) , S, and S
2

independ-

ent. Thus for all n,

P(Y
n
<t) = P(S

1
<t) P(S

2
<t)

P(Y
n
<t) = (1 - e

L
)(1 - e *

)

Parzen shows that under the above conditions N(t) is Poisson

distributed with mean \\ (1-F (s)) ds . Thus, N(t) has mean

-9 n s -9 s -(G-, + 9js
+ e - e )ds. In the limit, N is^K1

Poisson distributed with mean E(Y) where E(Y) = -j— + -jj-

M.
±
+M.

2

After some algebraic simplification, the mean is

\(m + JLL+ IAi XU)
, . .

E / N ) _,
2 1 * l One notes that E(N) is

AX
1

*L
2 (^ +^

2 )

11



less than the sum of ECl^) and E(N ) , which is to be

expected.

B. JOINT MOMENT GENERATING FUNCTION FOR N, AND N

Given n arrivals in (0,t), the arrival times are distri-

buted as n order statistics from a uniform (0,t) random var-

iable.

Since the order of arrival has no impact on service (infi-

nite server queue) , the probability that an arriving customer

will still be present at time t is merely a function of the

service distribution and the time of arrival.

Consider an arbitrary arrival, j, in (0,t). The arrival

generates one job for each service channel. Let Y, .(t),

Yp.(t) be a two dimensional, bivariate Bernoulli random

variable where the event Y, .(t) = 1 is defined as the j job

in channel 1 being present at time t. Yp.(t) = 1 is defined

as the event where the j job is present in channel 2.

Now for the arbitrary arrival, let x be arrival time.

Thus x ^Uniform (0,t) and the joint moment generating

function for Y .(t), Y .(t) is

Y
13

(t), Y
2
.(t)

y y

(0
1
,0

2
) =

( P]L
+ qx

e
1
)(p

2
+ q2

e
2

)

where px
= 1 - F-^t-x) , px

+ qx
= 1

p = 1 - F 9 (t-x) , p~ + q~ = 1

12



and F.. and F are the service time distribution functions for

channels 1 and 2 respectively.

Thus, unconditioning on the arrival time X,

= "f J (1 "F
1

(g (e-,,9?) = -r- J (l-F,(t-x) + F,(t-x)e 1
)«

Y
lj
.(t),Y

2
.(t)

L d t L 1

(1 - F
2
(t-x) + F

2
(t-y)e ^)-dx

Letting w=t-x for a change of integration variable

L-Qg)
= ^" S (1-F

1
(w) + F

1
lg (^,0 a $- } (l-F-,(w) + F

n
(w)e ±

)«

Y
lj(

t),Y
2
.(t)

9
2

(1-F
2
(w) + F

2
(w)e c

) dw

Considering all n arrivals in (0,t), each arrival

creates an independent bivariate Bernoulli random variable.

Hence, letting

n _n

X
n
(t) = 51 Y,,(t) X (t) = ^L Y ? .(t)

1
j=l ±J * j=l ^ J

then the joint moment generating function for X ( t) and X (t),

conditional on n arrivals in (0,t), is

*? (o,,0
? ) = |g (e

n
,9 2 )

X
1
(t), X

2
(t)

1 2
L Y

1
.(t), Y

2
.(t)

1 2 J

£ (e^Qj = ^ \(1-F (w) + F (w)e X
).

X^t), x
2
(t)

1 2
t
n
L J x x

(1-F
2
(w) + F

2
(w)e 2

)dw
]

13



Thus letting N^t), N
£
(t) be the numbers present at time

t for any number of arrivals in (0,t)

N
1
(t), N (t)

X 2 /C— n! X
1
(t), X

2
(t)

n=0

It follows that,

M (0, ,0 ) = e" ** e
A

N
1
(t), N

2
(t)

L 2

t
/"" Q

where A = \ (1-F
1
(w)+F

1
(w)e X

) ( 1-F
2

( w) + F
2

( w) e
2 )dw

Letting Y, and Y
2

be Bernoulli random variables, specific-

cally

Y,'^' Bernoulli (p-,) where p, = 1-F..(w)

Y"v- Bernoulli (p 2 ) where p 2
= 1-F (w)

,

then the moment generating function can be expressed as

M (Q Q ) « e

X\_a(e
L 2 -1) + b(e

X
-l) + c(e '

-l)J

14



where

j. x x

= S plp2
dw b J Plq 2

dw c =
S P2qlP 2

q, dw

Now consider the limiting form of the above function as t

First

lim a =
- M , w - M

2
w

e e dw = 1

XX 1
+ *x 2

lim b =

t—^^

-4-w - U
2
w

1 1 XX 2
e (1-e )

dw =— -j^T-
2̂

=
AJL^^+Ag)

lim c =
-/U w -J|,w

e ^ (1-e
x

) dw =
Ul

XL 2
"% +M 2

M
2
(«.

1
+AX

2
)

Then

M (9,,9j
N NiN

l'
iN

2

lim M
t-**> N

1
(t),N

2
(t)

(9r 2
)

X
. 9. + 9 p ,U 2

9
1

1 2

M i

M 2
(^ 1+ U )

9
9

(e
2

- 1)

15



It should be noted that the marginal generating functions,

and hence, N, , N are Poisson.

xn~(e 1)

M
N
1
(9

l
) =MN

1
,N

2
C9

l- ' = e

"n^V m \
1
,N

2
{0 - 9 2 ) = e

Now consider the second mixed moment, E I N,N_J .

[n
x
n
2]

= lim

e^ o
^ e

iK

. tf M \f 1 V 9
2

,

^2 9
l\ ^Mm ^ ± e

2

" xw^ e +

^t^i^? e
) t 2̂

«
x

+it
2

e M
N
1
,N

2

(e
i'

9
2

)

Therefore

IN 1N 21
=

_A lim ^ M X

«! 9„->0 ± 6
Z

W
l

+ *»2
E INJ.I = — *""" ^— +

'2

x . x
Since N

n
^ Poisson — and N„ *>- Poisson1

.w*www« ^ ^u A ,

2
- ^i^un

-x^-

16



then lim j*M -, rM ~| A

9^ Te7= ELN 2l
= "^

r 1 *and S CHj'
5J-

Thus, the correlation between N, and N
?

is

<?

E(N
1
N
2

) - E(N
1

) E(N
2 )

J
V(N

1
) V(N

2
)

!

A + A X , A >

U
1
W

2 V^2~ "l V
X X

Ax ^2

_V"i9 = ' —±
, which is independent of y\ .

AX
2

17



III. THE TWO CHANNEL QUEUE WITH A
SINGLE SERVER IN EACH QUEUE

As a modification to the first system, each service channel

will now be limited to a single server. The servers in

channels one and two work with exponential rates XL.. and

A\ 2> respectively. As before, N is the number of customers

in the system at steady state. N, and N are the number of

jobs to be done in each channel. The jobs are served using

a first in- first out discipline. The arrivals are generated

by a Poisson Process of intenstiy A •

A. STEADY STATE BALANCE EQUATIONS FOR THE SYSTEM

Since the system has both exponential interarrival and

exponential service times, the balance equations for the two-

dimensional steady state probabilities can be expressed as

follows. Letting P = P(N =n, , N =nj one has that
n-i »n

?
ll c c

l£n
2
< <o

( X+ju, ) p A = u_ p + 1,0 +u Pn -,v 1 n.,,0 1 n-, 2 n^,l

Hn
1
< °°

<W 2> P
0,n

2

=W
2

P
0,n

2

+1+ ^1 ?l,n
;

18



1 «n_ <- °°

XP
00 ="l P

10
+ ^2 P

01

The transition's between states can best be visualized

using the following transition diagram

IM
t. v

N,

One might suppose that the balance equation could be solved

using difference equation techniques. This does not seem to

be the case. First, most techniques used to solve partial

difference equations of the above type assume a solution of

the form,
nl n

r>Pn n
= a b 2

n
l'

n
2

19



Under the above assumption, one could solve for PV n
2

and express the result as

K
P = > n

l
n
2

n... ,n„ /

.

c. a. b. where (a.,b.)
1 2

j
=1 J J J J J

3=1, 2, ... K

are the K roots of the characteristic equation and c.'s are
J

arbitrary constants. However, since P is a function ofn
l'

n
2

two dependent random variables N, and N , it is known that

P cannot be factored into a separable product similarn
l'

n
2

n
l

n
2

to a b . If this were the case, then N-. and N would be

independent.

Therefore, for each probability there are two or more

arbitrary constants to be evaluated. If one solves the major

difference equation for the interior points of the first
n
l

n
2

quadrant, i.e. assume P = a b
n
l
,n

2

(X + m 1+ M 2 )
P^ ^P^.n^^^n.n/Vn^n^l

\
the roots are a=l b=l, a=l fr

^2

and a = -r b=l. Thus the general solution is

nv n
?

= ^L c^n^n^ a.
1 d

.1=1

n n
x

b.
J

20



or
\ n

2 v n
P
nr n

2

= ^(r^.n^ + c^n^iig) ( -j-) + ^(n-^M— )
*

Even using all of the boundary conditions, one cannot

find a particular solution to the above equation.

One point to note is that P can be expressed asn
l
n
2

> = P + P - P(n, U n )

12 1 2

Thus if one assumes that C
?
(n, ,n«) and Co(n-, ,n

? ) are

actually (1 -
. .̂ ) and (1 - -tt— ) respectively, them
2
— - A^

particular solution takes the following form

Again, using the boundary conditions only results in a

system of equations for C(n-, ,n
?

) which is equivalent to the

original set for P
n
l'

n
2

It appears as though the boundary conditions are of a

non-separable type, and consequently there is no explicit

solution for the balance equations.

B. SOLUTION TO THE BALANCE EQUATIONS USING THE PROBABILITY
GENERATING FUNCTION

The joint probability generating function can be expressed

n
l
=0 n

2
=0

n
l'

n
2

21



Using the "balance equations one can derive the following

expression for the joint generating function.

G(s,t) =

t(s-l) JEL P
n

+ s(t-l) Z_ P
n
2
=0 u ' n

2 n^O n
l'°

(\+ <*.,_+ <t*

2
) s t _ \ s

2
t
2

- tAlj- stx
2

In other words, G(s,t) is expressed as a function of

s, t, and the "boundary probabilities. If one knew these

probabilities, G(s,t) could be solved in closed form. However

such is not the case. It should be pointed out that the same

type of equational form occurs when finding a generating

function for queues which have either Gamma interarrival or

Gamma service times. However, the boundary probabilities

are finite in number and can be solved for using Rouche's

theorems on the roots of complex functions. It appears as

though this method is fruitless for the above function.

As in the infinite server queue of Chapter 2, the marginal

distributions, J N
(n

1
) and "J N

(n
2

) are known. They are

geometric and can be expressed as

-^i) = (1 -^ ){\
)ni

n
i

=
-

l! 2
-

•••

As one would expect, the marginal generating functions

are also geometric.

22



(t-i)xi^ ^_ p
ni ,o

2
n,=0

G(l,t) =

G(l,t) =

( X+ u +^
2

) t- Xt 2-t^
1
- u

2

(t-1) m
2

(1- A ) (t-i)-u
2

(1- -£~)

-Xt
2+(X+xOt->u - Xt(t-l) +JU (t-l)2' " 2

X % X
Jtt (l - -£- ) 1 -

G(l,t) =

2 A
2

U
2

- Xt+XA
2 i-TCX

"2

which is the generating function for a geometric random

variable with parameter 1 -

^2

X M X
Likewise G(s,l) = c

1 £. s
XX.

Thus, little has been gained using the generating function

approach.

C. AN ATTEMPT TO FIND THE JOINT GENERATING FUNCTION BY
CONDITIONING ON ARRIVING CUSTOMERS

In Chapter 2, the joint generating function of N, and N

was found using a filtered Poisson Process. In essence, the

method worked because the stochastic dependence of N, ( t) and

N ( t) was handled by conditioning on both the number and

arrival times of n customers, given an arbitrary time t since

the process started. Thus N,(t) and N ( t) , conditioned on

23



the above events, only depended upon their respective service

distributions

.

A possible approach to finding the joint moment generating

function for N,(t) and N»(t) is to handle the stochastic

dependence by the same conditioning. Thus, given the number

of arrivals at time t,

j">U
1
N
1
(t) + V2(t)

= I E [e
Wt)+^ (t)

/A(t) =nj

n=0

P [A(t) = n]

Letting = E [e 1 1 * 2 /A(t) = nj

it follows that

t t t

= { f...( Er...j
>U
1
N
1
(t) + ^2N

2
(t)

/A(t) = n, S
1
,S

2
, . . .S

n

S
l

S
n-1

n— ds, ds . . .ds^
n 1 2 n

r } \ \
*iN,(t) 1 -

^-J 5 ...J E [e
X X Mt) = n

1
S
1
S
1
...S

n J

n-1

e ^ /N(t) = n
1
S
1
...S

n J

nX ±^- ds. ... ds
• n 1 n

2^



Now the problem is to find the moment generating function

for N
1
(t) and N

2
(t) conditioned on the two given events. It

appears that this is not a trivial problem.

One might recall that in the infinite server queues, N,(t)

and N
2
(t), conditioned on the same events, were actually

binomially distributed with

t -A <*-T)

p = <T
^—

diz
t

The probability that any customer would be present at t was

independent of the presence of other customers. However,

with a waiting line in each queue, a dependence is generated.

If the j arrival is present at time t, so are the arrivals

j+1, j+2, ...n.

To this date, the conditional distribution of N,(t) (or

N
?
(t))has not been determined. One point to consider is that

whatever the conditional distribution is, it must be such

that the limiting distribution of N,(t) (or Np(t)) is geometric.

It should also be observed that the established theorems

concerning a filtered Poisson Process do not apply when

waiting lines develop. Even though N,(t) can be expressed as

A(t)

N,(t) = Z_ w.(t
n }

"C-,>S )

the response functions are correlated. If w. = 1 for the
J

j customer then

w. = 1 for i <C i £. n.
i j _

25



D. ANALYSIS OF ABSORPTION PROBABILITIES USING RANDOM
WALK THEORY

Consider the situation where the state of the system is

given. That is, at the present time, N, = i N = j . What

is the probability that the system will reach one section of

the boundary before the other section?

The attempt to answer this question used the theory of

a random walk. The problem reduces to solving an infinite

system of difference equations of the form

> „ «i
n n ,n

+ v ...... P
v „

2
y+~u^+~u^ n-j^-l, n

2
-l "

X+^-l+^2 n-j+1, n
2

^2
+ __ £ p

X + Jtt + M.
2

nlf n 2
+l

for l<n
1
^°° l^n

2
<«o

In this case, the boundary is partitioned into two classes,

following an approach introduced by Feller in An Introduction

to Probability Theory and Its Applications , Volume I . Using

this method of analysis, the boundary points are either given

values of 1 or 0. Thus if P of Pn =1, the probability
n-. , vj UiHp

of being absorbed by this part of the boundary is 1. Other-

wise, the absorption will take place at the other boundary

points.

Unfortunately, the solution to this system is as obscure

as the original system of balance equations explored earlier.

At this point, no solution has been found.
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E. SOME ADDITIONAL FACTS CONCERNING THE TRANSIENT DISTRIBUTION
OF WAITING TIMES FOR ARRIVING CUSTOMERS

The following material uses the queueing theory approach

espoused by Feller in An Introduction to Probability Theory

and Its Appli cations, Volume II . The intent is to develop a

closed form expression for the waiting time of the j arrival,

given that n customers had arrived at time t.

It will be noted that the theoretical results are highly

intractable. Perhaps further research will simplify the

following relationships.

Let,

X = B . - A
n n-1 n

Sn= X
l
+X

2
+X

3
+ •'• X

n

n-1 n

B. - S A - = B - A

i-0 j=l

n = number of customers - (start with customer 0)

A = time between arrival of n-1 and n
J customer

n

B = service time of n customer,
n

W = waiting time of n customer
n

W^ = max ) 0, S lf S
2

sV

If S, is. max ) 0, S.. , S^i • • • • s
n

then S
k
> 0, S

k
> S

1
, S

k
> S,,, . . . . S^ > S

k_ 1

W S
k'

S^2<Sk'
•'•• S

n-l
<S

k'
S
n
< \
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The event |S
k
> 0, S^ > S^^ S

k
> S

k_ 1
r

independent of Js^, < S
fc

. Sk+2< S
k S

n-l
<£V S

R < S,

Also the event

-j
S^ > 0, s

k
> S

]_» • • • • s
k > s

^_]_ ( is equivalent to

S
l ^ °' S

2
> °» S

k
> °

)

the event

Vl " S
k
< °> V 2 ' S

k < °' • • •
S
n-1 " S

k < °. S
n " Sk< °

is equivalent to

S
2
< °' S

3
<0 Sn-k-l< °' Sn-k<0

Thus, S, is max < 0, S, , S«, .... S
k L 1 2 n

if the two independent events

JS
1
>0, S

2
>0 S

k
>0

\ /

S
i
<0

'
S
2
<0 '

S
n-k

<0

are true

.

Let Pk
= p

/

S
1

'>0
'

S
2
>0, ,,,,S

k

*n-k
= P

{
S^ 0, S

2
<

° Vk<0
]

P = X ^0
= X

Then P(S
k

is max) = pk qn_k

Thus the distribution of W = max |0, S^, S^ .... S^

n

is P(W
n
<t) = 2~ P(S

i
<t) P(S._ is max)

or M = if is max.
n
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Therefore

n

P(W <t) = ~> P(S.< t) p. q .

n Z 1 ri Hn-i
i =1

P(W = 0) = q

k

Consider S^ = Zl. (B
i _ 1

- A
j
_)

= B*_
1

- A*

i-1

Bv ^Gamma (K n , >U n )

P(S
k >0) = P(B

k _ x
>A

k )

-* -«•
.

J

"'k-1"
u cum"a Xil

"l '
"^ 1

CO

P(s
k>

o) =
J
p ( Bk-i>t) ^4 (t) dt

o

A, ^ Gamma (K.., A )

0<
k-1

P(V 0) =
\ Z e "if"" Tknyr

(Xt)*" 1
e-

Xt
dt

^1 X CVH-i" 1 ^!
P(s->0)

<^ ji T^TTT (X+^>WJk

OO

J (k+j-l)! u 1 J

«%>».= ir^ik^HA
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Recognizing this to be the CDF of a type of Negative

Binomial distribution,

P(S
k>0) = P(2

k
*K) where %~Negative Binomial with

parameters P = (•

X +u )

and K

i.e. J (?) =^"Hr^)W)
K

Z = 0, 1, 2,

Note also that 2, can be expressed as the sum of independent

geometric random variables.

\ = VV • • • \

4
X

where "t v (x) = cX
i X +A

M
X + M.

Y

X = 0, 1, 2,

By symmetry, the event P(S, <0)
* *

can be expressed as P( B
k_n ^ \ )

= P( Av ^* Bv-1^

thus P(S
k
< 0) = P(W

k
<-K)

AX

where W,-^ Negative Binomial with parameters P = .

K A +M.
and K

^
k can be expressed as the sum of K independent geometric

random variables*
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w
k =W ••• Y

k

where „
i

"T y (y) = r c

y = o, 1, 2

Now given a sequence

i ? ' •
• •

• ^ n

consider computing P(S, is max)

P(S
k

is max) = pkqn_k

pk = P(S
1 > 0, S

2
> 0, s

k
>0) = p ( z 1

< !» z
2
<2 Z

k
<K)

pk
= P(X

1
<L1, X

1
+X

2
<2, X

1
+X

2
+X

3
<3 X^Xg+X + X

k
<K)

The last event can be described as a sequential modified random

walk where X. =0, 1, 2, .... and the event can only occur when

each partial sum is less than K.

As an example:

X.. must =

X can equal or 1

since X.. + X
2
< 2

etc.
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A pictorial representation of the above sequence is shown

below for K = 5

s

A sample sequence would be

z
1

=

x
2
=o

X
3

= 2

X = 1

This sequence satifies the event

X
1
^l, XL

+X
2
<2, VK

2
+K

3 * 3 '
XL+X2

+X
3
+X

^
< ^

X
1
+X

2
+X

3
+VX

5 * 5
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In order to calculate the probability of the event K=5, i,e.

P
5

= P(X
1
<1, X

1
+X

2
<2 3C1+X2

+X
3
+X^+X

5
< 5)

one must calculate the probability for each path starting at

(1,0) and terminating at either (5,0) (5,1) (5,2) (5,3) while

remaining in the acceptable region of transitions.

It so happens that there is a pattern to these paths.

In order to terminate at (5,0)

all X
i

= P((l,0)-* (5,0)) = =<
4'

where°^ =
\ + JU

In order to terminate at (5»l) all X. = except for one:

P((l,Q)-> (5,1)) =<* (l-oO One must multiply this probabil-

ity by a factor reflecting the number of paths from ( 1, 0)-> (5, 1)

.

This will be considered shortly.

The other termination probabilities are

(i,o)-»(5,2)i oc^i-oO 2

(1,0)-* (5,3): <*>(i-x.) 3

(1,0)-* (5,^)« ^(i-<)^

Thus we have shown that

P
5

= P(X
]

_

< 1, X
1
+X

2
<2, .... X

1
+X

2
+X

3
+X

ij>
+X

5
< 5)

= 2- c,
,

^(i-oqi-i
i=i :),1 ~ 1

K

In general P
k = 21 ck f i-l*

C (
1_^ 1

i=l

Now what about the coefficients ck>i
?
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One can analyze the possible paths to a given termination

point by an induction method. Consider the cases K=l, 2, 3,k.

q ..

5 --

1 -

i 4

n Pc

s*

4 -

3 -

Sn

n

3^



For K=l P
1
=P(X

1
<1) = P(X

1
=0) = «C

For K=2 the two termination points (2,0)(2,l) have only

one path to each of them hence C
?0

= 1 C .. = 1 and

P
2
=^ 2 +* 2(l-<)

For K=3, the three termination points are (3,0) (3,1) (3,2),

Consider (3.0). It can only be reached from (2,0).

Since the number of ways from (l,0)-»(2,0) = 1, then

C
30

= C
20

Consider (3»1). It can be reached from (2,0) and 2,1).

Hence C„, = C
Q

+ Cp,. Likewise C„ = C
2Q

+ C .. .

Thus it appears that one can compute the c
^j_» s

using a

modified form of Pascal's triangle.

K n=7

1 1

2 11
3 12 2

4-1355
5 l 4 9 14 14

6 1 5 14 28 42 42

7 l 6 20 48 90 132 132

etc.

where each row starts with 1 and each successive member is

equal to the sum of all row members in the preceding row

starting from the left up to but not including the same

column.
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i-1

*=1 ~K "1> J

Now

*n-k
= P < Sl< °- S

2
<

° S
n-k

<0)

= P(Y
1
< 1, Y

2
< 2, Y

n-k <n_k)

where the Y. a-* Geometric (P = - ±— )
1 X +>U

By analogy

n-k

qn-k
=
Z- c

n,^-lP (l-f ]

3-1 -U

? = (v —

)

1

1

Hence P(S
k

is max) = Pk1n_k

n-k
i-1P(S

k
is max) =2- ok>i_1

«-(l-c<)— ^ e ^
3=1

^
n-k

(l_p )tj-l

To date, no method has been found to simplify the above

expression because of the complexity of the coefficients, c.

.
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IY. THE TWO CHANNEL SERVER QUEUE WITH SINGLE SERVERS
AND LIMITED QUEUE CAPACITY

In this chapter, the system will be further modified by

placing a limit on the total number of customers allowed in

the system. Thus if N=K, this implies that N, and N
? , the

number of jobs in each queue, are also limited by K. Since

N - maxfN..,N f then the ordered pair (N-.,N
2 ) are restricted

to states bounded by a square region in the first quadrant.

The diagram below illustrates the allowed transitions for K

equal to 3

•

M % 1 M, *, 3
^"bsl,
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The balance equations for the K capacity system are

complicated, but finite in number.

(X + V ^
2
)P
ni ,n

2
= X Vl.r^-l + U

l
Pn1+ l."2

+ Vnj.n^l

Hn^K lin
2
<K

(UkA^^V» **
2v
Hn^ K

(X+V P
0.„ = *2P

0,n,+ l
+^l P

l,n.

lin
2
a

(U .+ M ,)P„ = Xlr , -+tt,P^„. 1L 2 K,n?
K-l,n,-l 2 iv.rig+l

l<n
2
<K

(A.+ U JP„ „ = \P
l
+ ^

2 ) PnrK= ^V 1 ^' 1
+^V' K

l^n
1
<K

A P =A( p + M. pr
00 1 10 2

r
01

A
1
P
K,0

= ^2PK,1

,U
2
P
0,K ~ 'Vl.K

(U
1
+A

2
)PK,K = XPK-1,K-1
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There has been a great deal of research performed in the

area of finding solutions to large, finite state, queueing

systems. The purpose of this work was to avoid the use of

computer simulation or standard iteration procedures. Instead,

an investigation into the special structure of this finite

system was conducted. Although a solution was not obtained,

several interesting facts were documented for use in further

research.

It should be noted that the K capacity system is more diffi-

cult to attack because the marginal probability functions for

N, and N
?

are not known. In the previous chapters, arrival

dependency did not affect the marginal distributions. Here,

one sees that when either service channel has K jobs, arrivals

are turned away.

A. ANALYSIS OF THE TRANSITION DIAGRAM FROM THE VIEWPOINT OF
NETWORK FLOW

One method of observing patterns among the steady state

probabilities is to view the transition diagram as a network.

By slicing the network with a cut, one can equate probability

flow across the cut. This is actually doing no more than

adding together several balance equations. However, the method

does facilitate a rapid development of relationships between

39



the probabilities. A transition diagram for K equal to two

is shown below.

N

By equating flow across the cut one finds that

XP
ll

+XP10=«lP22 + "lP
21

+V2

This equation could have been found by adding together the

three balance equations for P
2o' ^21' "^22 as ^°ll°ws '

1 20 2 21

<W P21= XP
10

+ *2P22

H- (
^ l^2)p22 =Xp11

"lP20 +U
l
P
21

+V22= XP
ll

+ AP
10

bo



Now let us consider an arbitrary value K. For any finite

K, the same type of cuts can be performed. If one writes all

the equations resulting from vertical cuts such as the one

above, it follows that,

K-l K

X 1l P
n = >U 3E P]

_ nn
2
=0 U ' n

2
L

n
2
=0 1,n

2

K-l K

A J2L P
l,n

?

= XX 1 2l_ P
2,n 9

n
2
=0 c

n
2
=0 d

K-l K

x y* p
K-i, n =^i y *

/__ *K-l
f n 9

"1 </_ "K,n ?
n
2
=0 c n

2
=0 c

K
Using the fact that P(N, = i) = ^" P. for any

n
2
=0 2

4i^K, one sees that the vertical cuts actually show relation-

ships between the marginal probabilities » In particular,

\P(N
1

= 0) -Ap0>k = ^
x

PCN-^1)

\p(n
x

= i) -Xp1>k = ^U-l PCN.^2)

A P(N
1
=K-l)-\PK _ ljK =H

1
P(N

1
=K)

In order to eliminate the P. . terms, one can add all of

the above equations to obtain

\ [l - P(N
X

= K)J -\[p(N
2

= K) - PK>K J =U
1
[l-P(N

1
= 0)]
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Note that the only probability which is not a marginal is

pr
K,K*

In an analagous fashion, all the horizontal cuts in a K-

level transition diagram yield the following equation.

X [l-P(N
2

= K)J - X[P(N
1

= K) - PKfK J
=U

1
1-P(N

2
= o)

J

Eliminating PK „ from both equations yields the surprising

result that

Ax
1
[i-p(n

1
= o)J = a

2
[l - p(n

2
= o)J

At the Least, the above relationship could be used as

a check against solutions obtained from iteration or simulation

The above results also show that the marginal probabilities

may be more efficiently solved for if one knows the boundary

probabilities in the original transition network.

Another interesting set of relationships can be found by

combining the first two equations found from the vertical cuts.

Recall that

\P(N
1
»0) -Xpq>k =\ P(N

1
=1)

\ PlN^l) -^ P
i,K

=>U
1

P ( N i
=2

)

Additionally using the balance equation for node P
Q}K »

it

follows that ^
2

P K
= ^1?1 K'

ThUS the tW° e<luations can be

combined to yield
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—Jp- P(N
1
=0) = (\ + XJl

2
) PCN^l) -XV

1
P(N

1
=2)

It follows by symmetry that

-^=- P(N
2
=0) = (\ + a

i
) P(N

2
=1) -A

2
P(N

2
=2)

Thus one has obtained two equations strictly in terms of

the marginal probabilites.

If one continued this pattern, it would not be possible to

arrive at an entire system of pure marginal equations. However,

the above equations can be used as check against any analytical

procedure which might seek solutions to the marginal probabili-

ties. This check is used later in this paper to show that a

proposed semi-Markov model for marginal probabilities is

incomplete.

Several other cuts were attempted, but the results always

appeared to re-establish the previously stated equations.

B. REDUCTION OF THE NUMBER OF BALANCE EQUATIONS BY
SUBSTITUTION

Consider again the system for K equal to two. It will be

shown that the nine homogeneous balance equations can be

reduced to three by a method of substitution. In terms of

an arbitrary K, this translates to reduction of (K+l)

^3



balance equations into a system of 2K-3 balance equations in

2K-3 unknowns. The method is as follows.

In theory, it is possible to express each probability

in the set circled in terms of boundary probabilities P 9 ,

,

P« « and P, p. In a sense, one is "walking" from one boundary

to another on the opposite side of the network. In finding all

P. .
r s in terms of P

2
,, P

2 2
and P,

2
, the only balance

equations which are not utilized are those for P
Q

,, P
Q Q

,

and P, - As an example, Pn -. can be expressed in terms of
J. , U U » -L

P, 2 and P
2 2 by using the balance equation for P-,

2
, that is

(
M

l
+V P

1, 2
= XP0,1^1 P

2,

W
1
M

2 U
0,1 \ 1,2 X 2.2

Thus if all the P. .

r s are expressed in terms of P,

where l^n^.K, P^ K

K,n
2

where lin,^K, and P^ „., one can use1~"' ~~ *K,K

the remaining boundary equations for P
n >0

lfn^K, P
Q>ri

J- *—

lin ^.K and Pn n to arrive at a homogeneous system of three

equations in three unknowns. For the above case,
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0,2 «u ^1,2

P = — P - — V
0,1 ^ *l f 2 \ ^2,2

°'° ^2 *2,2 "
X

F
2,l " "X P

l,2

1,0 x
P2,l" X

P
2,2

P = —— P
2,0 ju 1

r
2,l

^'i.i- "x
?2

' 2

Now if one writes the balance equations for nodes P ,

u , 1

P
Q

, and P, using the above equations, the result will be

three homogeneous equations in three unknowns, 7 , , P»
,

and P
1>2

.

It must be pointed out that there did not appear to be any

obvious pattern to the build up of coefficients as one "walks"

through the network. All attempts made to find closed form

expressions for the coefficients were to no avail. In theory,

each P. . can be expressed as

p
ig = £ cm p

K, m
+ % an P

n ,K
-K*PK ,Km-i n=l
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The above substitution is no different from a Gaussian

elimination scheme that could be used for any system of

equations. However, it was hoped that these equations

contained special structure and would lend themselves to an

analytical solution.

C. COMMENTS CONCERNING THE MATRIX STRUCTURE OF THE BALANCE
EQUATIONS

One can write all the balance equations in the form AX=B

where A is (K+l)
2
by (K+l) ,X is the (K+l)

2 by 1 column vector

2for the P^'s and B is a (K+l) by 1 column vector which has

all but one element equal to 0. The result is a system of

(K+l) -1 homogeneous equations and 1 normality equation

P.. = 1. The normality equation may replace any one of

the original (K+l) homogeneous equations and thus insure that

the non-homogenous system has a unique solution.

After a great deal of experimentation with reordering the

rows and columns of the coefficient matrix, it was concluded

that there existed no special structure in the equation set.

At first glance, one might be attracted to the regularity of

the coefficient matrix. As an example writing the balance

equations for K=2 in descending order of the second and then

first coordinate one arrives at the following system.

k6



<*tVAAt -X

->U.i. «U,+-Ut -X

~M% A*,

-U, MrVMr -X

-A, —Uj, XtA^Mi -x

~*l -*J>x. Wj
-<U

V
Mr

—Uv
--Ua. Wi.

1 I 1 I I t \ » 1

22

21

20

12

11

*10

02
5

oi

00 1
L J

The coefficient matrix is strongly diagonal in structure.

However, no special method was found to solve the above system

without resorting to the standard elimination schemes already

known.. In all cases, it was necessary to completely triangular-

ize the matrix and then use hack substitution to solve for the

V s -

Originally the intent was to find a partial inversion or

partial row elimination scheme which would allow for the solu-

tion of the boundary probabilities without having to use all

the information in the matrix. The conclusion is that the

boundary conditions form an inseparable portion of the entire

system. Perhaps further research may uncover an efficient

scheme for solution.
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D. AN ATTEMPT TO SOLVE FOR THE MARGINAL PROBABILITIES
USING A SEMI-MARKOV MODEL

N

>

N

Let N.. = # of customers in queue #1 .

Consider just the N, queue (including customer in

service).

N, is dependent upon the arrival stream, the service

distribution, and the distribution of N 2< Specifically,

when N„ = N, arrivals cannot enter either queue.

The N, queue also has capacity = N.

Consider modeling the N, queue as a semi-Markov process.

The state of the system will "be the number of customers in

the system. N-,=0,l,2, . ...N.

Let P. . be the transition probability from i ~} j

.

j

Let °t~ i = expected time system is in state i.

Let Ki = limiting transition probability of transitioning

into state i.

Let P- = steady state probability of being in state i.

Transitions will only be allowed from

i—> i+1 and i—* i-1.

Using a semi-Markov model, one assumes that when the system

is in state i it will remain in state i for a random amount

of time (mean = < i) . Then the system will either transition

4-8



to state i+1 or i-1. When i=0 it will transition to i=l with

probability 1. When i=N transition i=N-l with probability

1.

In essence, the semi-Markov model has transitions which

are in accordance with a Random Walk Markov Chain (with pure

reflecting barriers)

.

Thus the transitions are described as

1 2 3 4 N-l N

1

1 p
l *1

2 P
2 q2

3 P
3

q
3

..

1+

N-l Vi *n-l

N • • • 1

where p. + q. = 1

The underlying theory of this model allows the following

statements

.

If T^i i=0,l,2... N are the solutions to the following

system.

N

1l ^i = i

i=0

N
T i - £ *11 TJj=o

k9



Then the P. ' s can "be found "by

Pi = —-——«
* T

o "Jj=0 J J

The basic requirement for a serai-Markov model is that the

distribution of time spent in a state be independent from state

to state. It appears as though the exponential character of

the service and arrival distributions will insure this.

It should be noted that all N"i's and P- ' s must be

conditioned on the state of the N
2

queue. A Bernoulli type

conditioning will be used. The states of Np will be partitioned

into two classes N
2
< N P(N

2
< N) = 1-K

N
2
= N P(N

2
= N) = K

1. Transition Probabilities

Consider i = 1,2,3» ••• N-l

Case I N
2
< N

Given the system is in state i

P. . ,
, =5 v— arrival occurs before service

1, 1+1 A + M^

p. . .,
= x , ,

— service occurs before arrival.
i,i-l A + Aa.

1

Case II N
2

= N

lichen N is capacitated, the transition from i to

i+1 can only take place if N
£

serves one customer and then

an arrival occurs before N
1 can serve one customer.
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i.e. S
1
^-EXP(^

1 ) S
2
-EXP(^

2
) A-^EXP(X)

P
i,i+1

= P(S
1 * S

Z
+A) = P(S 2^ S

l
}

'

p (A<s
i )

•K-

where S, represents memoryless service

x *

i.i+l M^M
2 \ + ^

1 (X+MjXM^xig)

Likewise transition i—» i-1 takes place only when S, £ S^+A

P
i>i _ 1

= P(S^rS
2
+A) = P(S

1
^S

2
) + P(S

1
>S

2
, S*<A)

M 1
^

2
n

1
jU

1
(X+^

1
+M

2
)

P
i,i-1

=
AA 1+^ 2

+ A 1+ * 2 X + ^x
=

(\ + JU
i
)(^

i
+JU

2
)

Thus finding the total transition probabilities as a function

of K, one has

A A^2 K
p
i,i+i "X"+TT^ U"K) + (\+^

1
)(m

1
+^

2
)

p
i,i-i -\ + m

1
(1 "K) + (X+^

1
)(u 1+^ 2)

Simplifying
>u .(\k+u +3x

)

P. . . = —^ 1 2 = P

\ (^^^2 " *]_ K)

For i = P0>1
= 1 i = N P

N>N-1
= 1
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2. Limiting Transition Probabilities

Using the relationship IT . = 2t P.. T.
i J=0 ji j

the following system of equations develop.

N.
q N-l

N-l N q N-2

N-2 q N-3 ^ N-l

N-3 q N-4
+ ^ N-2

IT
3

= qT2+ PT^

T
2
=*Tri+ pT

lr = p T
x

Setting the equations as in a matrix, one row operation

through the matrix produces the following solutions
.i-1

T
i

= -p-0p) ^ 1*1.2,3, ...N-l

N V^P /
M

Using the normality relationship ^ = 1

IT = 2P-1 pv-

2(p-ifT>
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3. Expected Time in Each State .

The <*i's are calculated by conditioning on N
2

Case I N < N

i.o ^--jL

1-1.2.... N-i ^i-x-riq

i = N <* i ^

Case II N
2

= N

i = the N, queue must wait for 1 N« service and

then 1 arrival

i \ U 2

i = 1,2 N-l the N, queue waits for the minimum

of 1 N, service or 1 N
2

service and 1 arrival.

Let X = min i S n ,S
2
+A

By conditioning etc.

\(\+*,) --U (41 +>U
)

E(X) _ i £ i £

i=N

o<. _ 1
i ' XA.

still.
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Hence the total expected waiting times are

X K+ M „

M

X K+ U + xx

i =

( \ + xx
1
)(xx

x
+u

2
)

i = 1,2, . . .N-l

V
1

i = N

Knowing " ^'s and^C.'s one can calculate closed form expres-

sions for P^'s in terms of X , -U-,
, -U , and K.

Now from original two dimensional steady state

transition diagram one can show the following relationship to

be true. This equation was derived in the previous section.

(\ +*
2

) pi= ^ iP2+
^L2 p

For the case, K=3» the above equation could not be

satisfied using the expressions for Pq,P,,P
2

found by the

proposed model. It appears as though the fixed coupling

coefficient K does not completely characterize the interaction

between the two queues. At least having the above marginal

equation available allowed for a quick check against the

model.
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V. CONCLUSION

There is a great deal more research which can "be performed

in order to "better understand the effects of arrival dependence

upon service systems.

As one can no doubt conclude, finding analytical solutions

to queueing problems of this type is extremely difficult and

may in fact require a completely novel approach.

The infinite server queue did not pose much difficulty

because the waiting time of any customer was strictly a function

of his own service time. However, the systems with finite

servers and finite capacity still remain unsolvable from an

analytical viewpoint.

One can think of many instances where finite server and

finite capacity queues could be used to model repair and

maintenance systems. Consider a military maintenance company

which services vehicles or generators. Often, the arrival

of a certain item of equipment initiates several activities,

many of which are independent. It was the aim of this

research to model such activities. Unfortunately, only

partial answers have been obtained. Hopefully, more study
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will "be concentrated in this area of stochastic modeling in

order to advance the current knowledge of these and other

related systems.
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